Poly(ADP-ribose) Polymerase


iijima@med.kobe\u.ac.jpNotesTrial ID: JMA\IIA00380 LEARNS 2019 Trial name or titleThe LEARNS AZ 10417808 Study: Prevention of relapses with levamisole as adjuvant therapy in children with first episode of idiopathic nephrotic syndrome.MethodsDouble\blind, placebo\controlled RCTParticipants157 children with initial episode of idiopathic NS aged 2 to 16 yearsInterventions1. Register of Studies up to 10 March 2020 through contact with the Information Specialist using search terms relevant to this review. Studies in the Register are identified through searches of CENTRAL, MEDLINE, and EMBASE, conference proceedings, the International Clinical Trials Register (ICTRP) Search Portal and ClinicalTrials.gov. Selection criteria Randomised controlled trials (RCTs) or quasi\RCTs were included if they involved children with SSNS and compared non\corticosteroid immunosuppressive medications with placebo, corticosteroids (prednisone or prednisolone) or no treatment; compared different non\corticosteroid immunosuppressive medications AZ 10417808 or different doses, durations or routes of administration of AZ 10417808 the same non\corticosteroid immunosuppressive medication. Data collection and analysis Two authors independently assessed study eligibility, risk of bias of the included studies and extracted data. Statistical analyses were performed using a random\effects model and results expressed as risk ratio (RR) for dichotomous outcomes or mean difference (MD) for continuous outcomes with 95% confidence intervals (CI). The certainty of the evidence was assessed using GRADE. Main results We identified 43 studies (91 reports) and included data from 2428 children. Risk of bias assessment indicated that 21 and 24 studies were at low risk of bias for sequence generation and allocation concealment respectively. Nine studies were at low risk of performance bias and 10 were at low risk of detection bias. Thirty\seven and AZ 10417808 27 studies were at low risk of incomplete and selective reporting respectively. Rituximab (in combination with calcineurin inhibitors (CNI) and prednisolone) versus CNI and prednisolone probably reduces the number of children who relapse at six months (5 studies, 269 children: RR 0.23, 95% CI 0.12 to 0.43) and 12 months (3 studies, 198 children: RR 0.63, 95% CI 0.42 to 0.93) (moderate certainty evidence). At six months, rituximab resulted in 126 children/1000 relapsing compared with 548 children/1000 treated with conservative treatments. Rituximab may result in infusion reactions (4 studies, 252 children: RR 5.83, 95% CI 1.34 to 25.29). Mycophenolate mofetil (MMF) and levamisole may have similar effects on the number of children who relapse at 12 months (1 study, 149 children: RR 0.90, 95% CI 0.70 to 1 1.16). MMF may have a similar effect on the number of children relapsing compared to cyclosporin (2 studies, 82 children: RR 1.90, 95% CI 0.66 to 5.46) (low certainty evidence). MMF compared to cyclosporin is probably less likely to result in hypertrichosis (3 studies, 140 children: RR 0.23, 95% CI 0.10 to 0.50) and gum hypertrophy (3 studies, 144 children: RR 0.09, 95% CI 0.07 to 0.42) (low certainty evidence). Levamisole compared with steroids or placebo may reduce Ecscr the number of children with relapse during treatment (8 studies, 474 children: RR 0.52, 95% CI 0.33 to 0.82) (low certainty evidence). Levamisole compared to cyclophosphamide may make little or no difference to the risk for relapse after 6 to 9 months (2 studies, 97 children: RR 1.17, 95% CI 0.76 to 1 1.81) (low certainty evidence). Cyclosporin compared with prednisolone may reduce the number of children who relapse (1 study, 104 children: RR 0.33, 95% CI 0.13 to 0.83) (low certainty evidence). Alkylating agents compared with cyclosporin may make little or no difference to the risk of relapse during cyclosporin treatment (2 studies, 95 children: RR 0.91, 95% CI 0.55 to 1 1.48) (low certainty evidence) but may reduce the risk of relapse at 12 to 24 months (2 studies, 95 children: RR 0.51, 95% CI 0.35 to 0.74), suggesting that the benefit of the alkylating agents may be sustained beyond the on\treatment period (low certainty evidence). Alkylating agents (cyclophosphamide and chlorambucil) compared with prednisone probably reduce the number of children, who experience relapse at six to 12 months (6 studies, 202 children: RR 0.44, 95% CI 0.32 to 0.60) and at 12 to 24 months (4 studies, 59 children: RR 0.20, 95% CI 0.09 to 0.46) (moderate certainty evidence). IV cyclophosphamide may reduce the number of children with relapse compared with oral cyclophosphamide at 6 months (2 studies, 83 children: RR 0.54, 95% CI 0.34 to 0.88), but not at 12 to 24 months (2 studies, 83 children: RR 0.99, 95% CI 0.76 to 1 1.29) and may result in fewer infections (2 studies, 83 children: RR 0.14, 95% CI 0.03 to 0.72) (low certainty evidence). Cyclophosphamide compared to chlorambucil may make little or no difference in the risk of relapse.